# Space Assembly and Service via Self-Reconfiguration



#### Wei-Min Shen and Peter Will

USC/ISI Polymorphic Robotics Laboratory

#### **Berok Khoshnevis**

USC Industrial and Systems Engineering Department

#### **George Bekey**

USC Computer Science Department

Program Managers

Neville Marzwell (NASA/JPL), Junku Yuh (NSF)

# **ISI Polymorphic Robotics Lab**

#### http://www.isi.edu/robots

#### Mission

- To build <u>Self-Reconfigurable Systems</u> such as metamorphic robots, agents, and smart structures that go where biological systems have not gone before!!!
- Projects and Awards
  - YODA (1996) The 2<sup>nd</sup> place in AAAI competition
  - Dreamteam (1997) RoboCup World Champion
  - Intelligent Motion Surface in MEMS (1996-98)
  - CONRO Self-Reconfigurable Robots (1998-)
- People, Robots and Facilities
  - Experienced and talented research team
  - 3 Denny robots, 5 SoccerBots, 18 CONRO modls
  - Large labs and workshops, many instrumentations





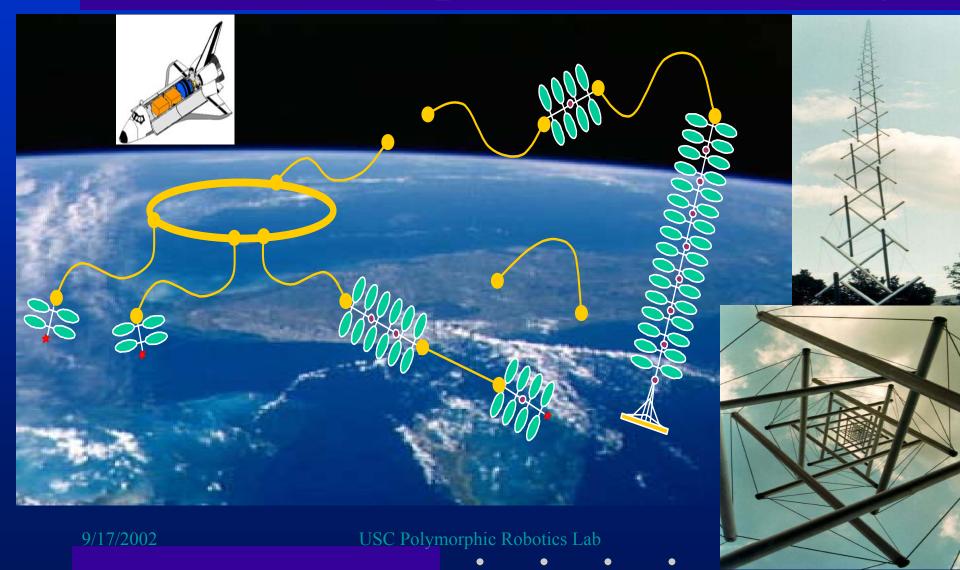








#### Outline


- Motivation for Self-Assembly in Space
- Three Enabling Technologies
  - Based on Self-Reconfigurable Robots
- Proposed Evaluation Experiments
- Research Plan for SSPS
- Future Directions

### Motivation for Self-Assembly

- Cost Effective
  - For a 10KM SSPS
    - >2,500 hours of astronaut space walk
      - -4/11/2002, girder assembly (2\*6 hours)
    - >\$3 billion for assembly cost
- Feasible Strategy
  - Most jobs by self-assembly
  - Critical jobs done by astronauts



# A Vision for Space Self-Assembly



#### Three Enabling Technologies

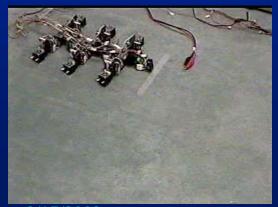
- Intelligent and Reconfigurable Component (IRC)
  - Can free-float and dock to form structures
- Free-flying Fiber Match-Maker Robots (FIMER)
  - Can search, navigate, bring-together and dock IRCs
- Distributed Process Controller (DPC)
  - Can plan self-assembly in a distributed manner and recover from unexpected situations

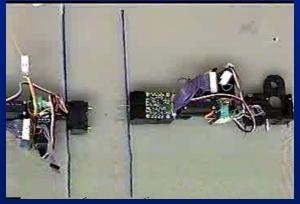
# Self-Reconfigurable Robots









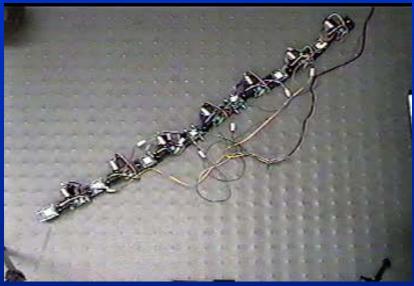

#### CONRO Self-Reconfigurable Modules

A network of physically coupled agents
Self-assembling into various configurations!










9/17/2002

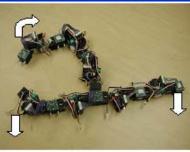
USC Polymorphic Robotics Lab

# "Live Surgery" Reconfiguration















# Beyond-Bio Self-Reconfiguration









# Challenges in Control

- Distributed
  - Autonomous modules must be coordinated by local configuration information (no unique IDs or brain modules)
- Dynamic
  - Network and configuration topology changes
- Asynchronous
  - Communication with no real-time clocks, global or local
- Scalable
  - Weak local actions vs. grand global effects
- Fault-tolerant
- Miniature and self-sufficient

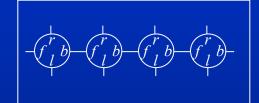
#### Related Work

- Self-Reconfigurable robots
  - Diffusion-reaction (Turing 52)
  - Cebots (Fukuda Nakagawa90)
  - Polybots (Yim 94)
  - Metrics (Chirikijan 98)
  - 3D structures (Murata '98)
  - Self repair (Murata 2000)
  - Molecules (Kotay&Rus '98)
  - Feather formation (Chuong '98)
  - Self-Transform (Dubowsky'00)

- Control approaches
  - Control tables (Yim94)
  - Multi-agents (Hogg2000)
  - Finite State Machine (Rus2000)
  - Decentralized and autonomous system (Mori84)
  - Homeostatic control for resource allocation (Arkin88)
  - Dynamic topology network (Si&Lin2000)

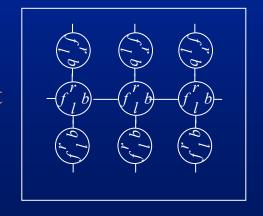
# Digital Hormones

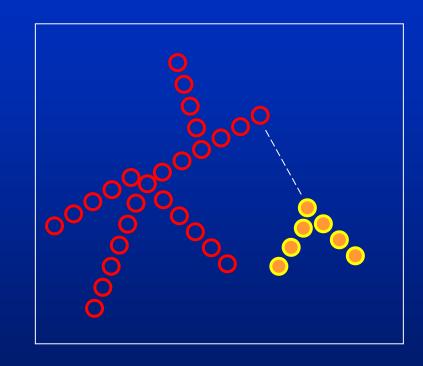
- Content-based messages
  - No addresses nor identifiers
  - Have finite life time
  - Trigger different actions at different sites
- Floating in a global medium
  - Propagated, not broadcast
  - Internal circulation, not external deposit (pheromones)
- Preserve local autonomy for individual sites
- Hormones can modify module behaviors (RNA)


# Mechanical Cells (M-Cell)



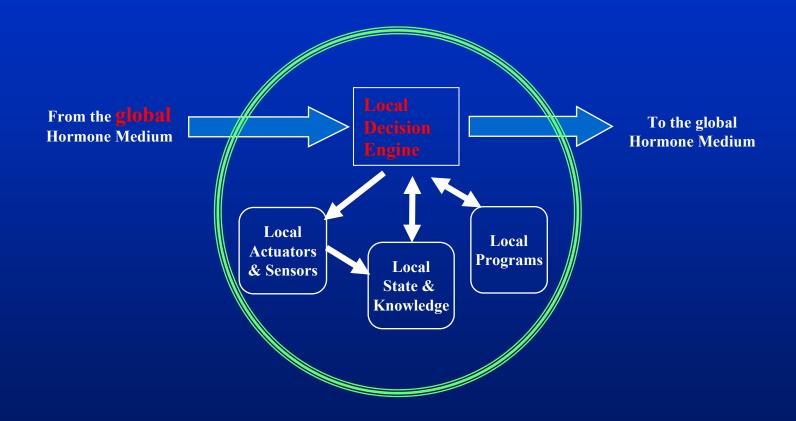
# M-Cell Organizations






A Snake


A 6-leg insect





Communication between two separate structures

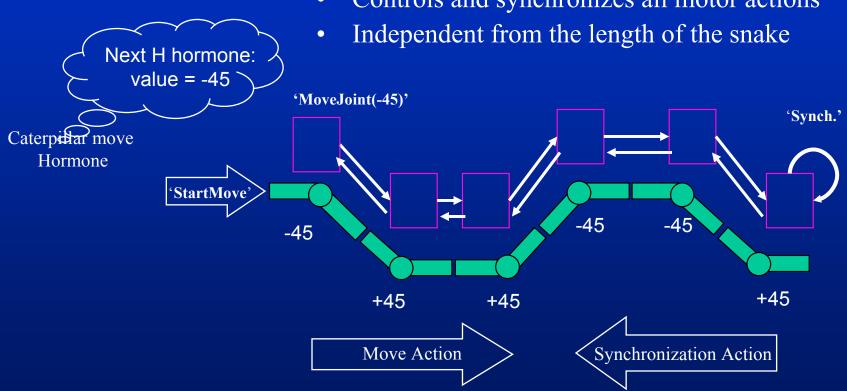
#### M-Cell Control Software



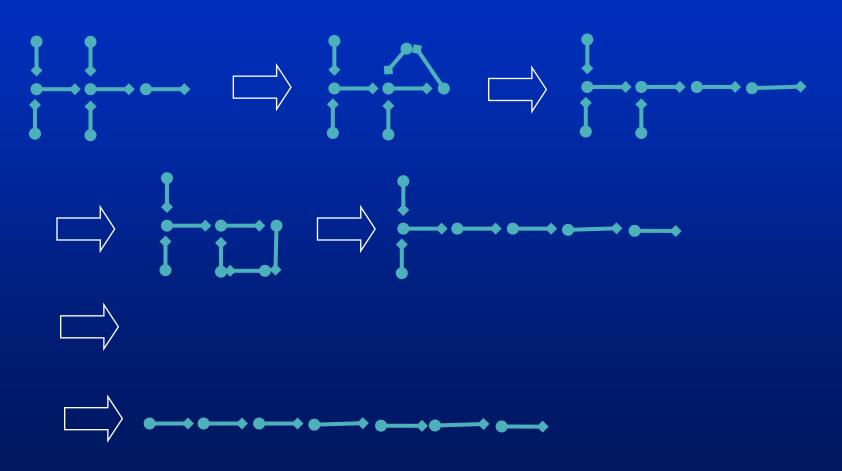
# Discovering Topology

Table 1: The Types of CONRO M-Cells

|                            | This Module     |                 |                 |                 | This Module |                 |                             |                 |                             |      |
|----------------------------|-----------------|-----------------|-----------------|-----------------|-------------|-----------------|-----------------------------|-----------------|-----------------------------|------|
| Ш                          | $\widetilde{p}$ | £               | ŗ               | Ĩ               | Type        | $\widetilde{p}$ | £                           | ŗ               | Ĩ                           | Type |
|                            |                 |                 |                 |                 | T0          | ſ               | b                           |                 |                             | T16  |
|                            | £               |                 |                 |                 | T1          | £               |                             | $\widetilde{p}$ |                             | T17  |
|                            |                 | $\widetilde{p}$ |                 |                 | T2          | £,              |                             |                 | $\widetilde{\widetilde{p}}$ | T18  |
| es                         |                 |                 | $\widetilde{p}$ |                 | T3          |                 | $\widetilde{\widetilde{p}}$ | $\widetilde{p}$ | $\widetilde{\widetilde{p}}$ | T19  |
| dul d                      |                 |                 |                 | õ               | T4          | £               | $\widetilde{\widetilde{p}}$ | $\widetilde{p}$ |                             | T20  |
| Connected to other modules | ĵ               |                 |                 |                 | T5          | £               |                             | $\widetilde{p}$ | $\widetilde{p}$             | T21  |
| er 1                       | ŗ               |                 |                 |                 | T6          | £               | $\widetilde{\widetilde{p}}$ |                 | $\widetilde{\widetilde{p}}$ | T22  |
| oth                        |                 | $\widetilde{p}$ | $\widetilde{p}$ |                 | T7          | ĵ               | $\widetilde{\widetilde{p}}$ | $\widetilde{p}$ |                             | T23  |
| ᅌ                          |                 |                 | $\widetilde{p}$ | $\widetilde{p}$ | T8          | ĵ               |                             | $\widetilde{p}$ | $\widetilde{p}$             | T24  |
| ed                         |                 | $\widetilde{p}$ |                 | õ               | Т9          | ĵ               | $\widetilde{p}$             |                 | õ                           | T25  |
| ect                        | Ĩ               | $\widetilde{p}$ |                 |                 | T10         | ŗ               | õ                           | $\widetilde{p}$ |                             | T26  |
| Щ                          | Ĩ               |                 | $\widetilde{p}$ |                 | T11         | ŗ               |                             | $\widetilde{p}$ | $\widetilde{p}$             | T27  |
| ರ                          | Ĩ               |                 |                 | õ               | T12         | ŗ               | $\widetilde{p}$             |                 | $\widetilde{p}$             | T28  |
|                            | ŗ               | $\widetilde{p}$ |                 |                 | T13         | £               | $\widetilde{p}$             | $\widetilde{p}$ | $\widetilde{p}$             | T29  |
|                            | ŗ               |                 | $\widetilde{p}$ |                 | T14         | ĵ               | $\widetilde{\widetilde{p}}$ | $\widetilde{p}$ | $\widetilde{p}$             | T30  |
|                            | ŗ               |                 |                 | ñ               | T15         | ŗ               | $\widetilde{p}$             | $\widetilde{p}$ | $\widetilde{p}$             | T31  |


|                       | ş                           | 8                           | ٧.                          |     |
|-----------------------|-----------------------------|-----------------------------|-----------------------------|-----|
| f                     | b                           |                             |                             | T16 |
| £                     |                             | $\widetilde{\widetilde{p}}$ |                             | T17 |
| £                     |                             |                             | <i>p</i>                    | T18 |
|                       | <i>p</i>                    | $\widetilde{p}$             | $\widetilde{p}$             | T19 |
| £                     | $\widetilde{p}$             | b<br>b                      |                             | T20 |
| £                     |                             | $\widetilde{p}$             | $\widetilde{\widetilde{p}}$ | T21 |
| £                     | $\widetilde{\widetilde{p}}$ |                             | $\widetilde{p}$             | T22 |
| Ĩ                     | $\widetilde{p}$             | <i>p</i>                    |                             | T23 |
| Ĩ                     |                             | $\widetilde{p}$             | <i>p</i>                    | T24 |
| ĵ<br>Ĵ                | $\widetilde{\widetilde{p}}$ |                             | $\widetilde{p}$             | T25 |
| ŗ                     | $\widetilde{p}$             | $\widetilde{p}$             |                             | T26 |
| $\frac{r}{\tilde{r}}$ |                             | Ď                           | $\widetilde{p}$             | T27 |
| ŗ                     | $\widetilde{p}$             |                             | <i>b b b b b b b</i>        | T28 |
| £                     | b<br>b<br>b                 | $\widetilde{p}$             | $\widetilde{p}$             | T29 |
| Ĩ                     | $\widetilde{p}$             | <i>b</i>                    | $\widetilde{p}$             | T30 |
| ŗ                     | $\widetilde{p}$             | $\widetilde{p}$             | õ                           | T31 |

# The Uses of Digital Hormones


- Communication in dynamic network
- Cooperation among distributed autonomous modules
  - Locomotion
  - Reconfiguration
  - Synchronization
  - Global effects by weak local actions
  - Conflict resolution (multi hormone management)
  - Navigation
- Shape adaptation and self-repairing

### Hormones for Caterpillar Move

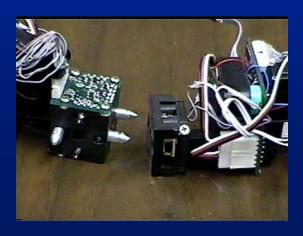
- A simple one-pass hormone from head to tail
- Controls and synchronizes all motor actions



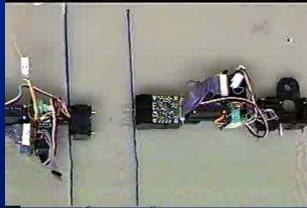
### Reconfigure Insect -> Snake



#### Hormone Activities


#### **Active hormones**

#### Actions

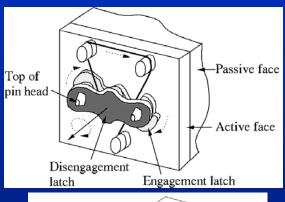

| LTS                                                                       | Start the reconfiguration                                   |
|---------------------------------------------------------------------------|-------------------------------------------------------------|
| RCT <sub>1</sub> , RCT <sub>2</sub> , RCT <sub>3</sub> , RCT <sub>4</sub> | Legs are activated                                          |
| TAR, RCT <sub>2</sub> , RCT <sub>3</sub> , RCT <sub>4</sub>               | The tail inhabits RCT, and leg1 determines RCT <sub>1</sub> |
| ALT, RCT <sub>2</sub> , RCT <sub>3</sub> , RCT <sub>4</sub>               | The tail assimilates leg1 and then accepts new RCT          |
| TAR, RCT <sub>2</sub> , RCT <sub>4</sub>                                  | The tail inhabits RCT, and leg3 determines RCT <sub>3</sub> |
| ALT, RCT <sub>2</sub> , RCT <sub>4</sub>                                  | The tail assimilates leg3 and then accepts new RCT          |
| TAR, RCT <sub>2</sub>                                                     | The tail inhabits RCT, and leg4 determines RCT 4            |
| ALT, RCT <sub>2</sub>                                                     | The tail assimilates leg4 and then accepts new RCT          |
| TAR                                                                       | The tail inhabits RCT, and leg2 determines RCT 2            |
| ALT                                                                       | The tail assimilates leg2 and then accepts new RCT          |
| Ø                                                                         | End the reconfiguration                                     |

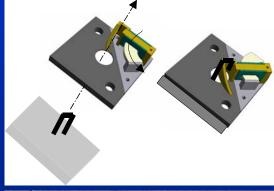
### Autonomous Docking

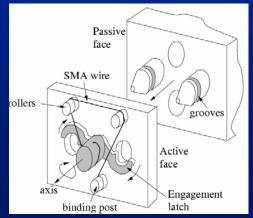
- A great challenge for self-reconfiguration
- Require precise sensor guidance
- Demand precision movement
- Complex dynamics in micro-gravity environment



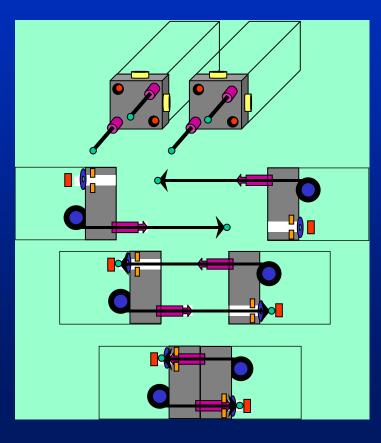






### Intelligent Reconfigurable Components

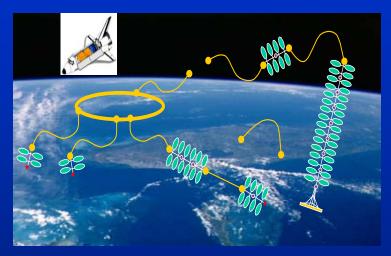

An IRC has (1) a controller, (2) a set of named connectors, (3) wireless communication, (4) self-locating system, and (5) short-range sensors for docking guidance

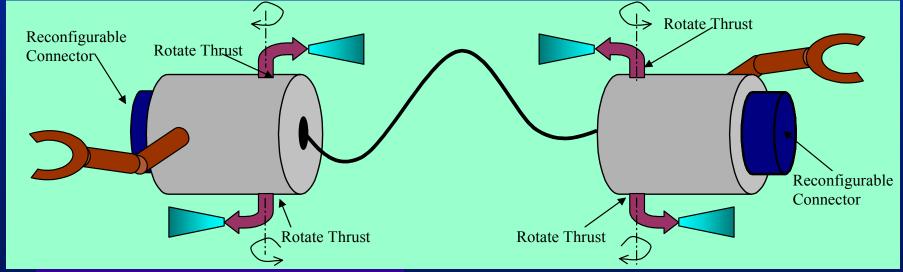
# Reconfigurable Connectors


1999 2001 2003



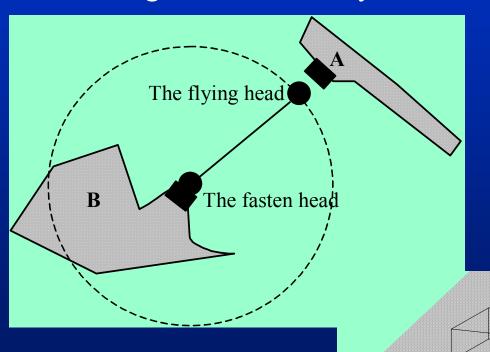







#### FIMER Robots


Two-headed fiber/rope
Free-flying head (6DOF)
Navigate and dock to the connectors
Rail-in fiber to bring parts together
Simple arms to assist dock
Onboard power or refuel capability





### FIMER Dynamics and Control

Find relevant connectors based on their location information Railing in the fiber only when there is no tension

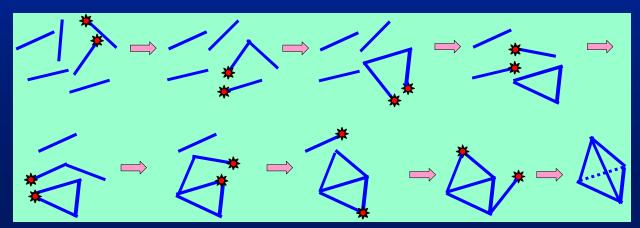


#### Research Issues:

- \* Dynamics of tethered objects in zero-gravity environment
- \* Speed control
- \* Collision control
- \* Prevent tangling

#### The Global Process Control

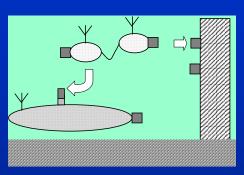
- How do modules know *when* and *where* to connect?
- Advantages for distributed control
  - Coordination of autonomous modules without fixed brain
  - Support dynamic configuration topology
  - Asynchronous: communication without global clocks
  - Scalable: support growing structures
  - Fault-tolerance
  - Self-repairing capability
  - Self-replanning for unexpected events

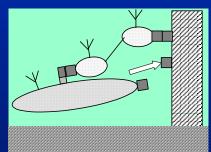

### Proposed Process Control

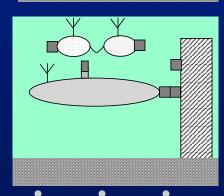
#### Assumptions

- Modules have unique identifiers
- Assembly sequence embedded in modules

#### Procedures


- Activate self when receiving a call for its ID or type
- Call FIMER robots to assist docking (when activated)
- Activate the next connectors to be docked





### Proposed Experiments

- Build modules for autonomous planning, navigation, & docking
- "2D flight-test" on an air hockey table
- Extensible to future 3D flight-test in micro-gravity environment









#### Research Time Table

| Task                              | Time        |  |  |  |  |
|-----------------------------------|-------------|--|--|--|--|
| Computer<br>Simulation            | 0-3 month   |  |  |  |  |
| Building 2D flight modules/robots | 0-12 month  |  |  |  |  |
| Control framework and algorithms  | 6-24 month  |  |  |  |  |
| Forming simple 2D structures      | 12-24 month |  |  |  |  |